
Adversarial Examples for Keyword Spotting Systems using GANs

Sushil Khyalia∗ (160050035), Kartik Khandelwal∗ (160070025) and Syamantak Kumar∗ (16D070025)

Abstract— In this project we implement a Generative Adver-
sarial Network (GAN) which generates adversarial noise for a
given Keyword Spotting (KWS) system and then retrain the
KWS system on the adversarial examples to make it more
robust.

I. INTRODUCTION
In recent years, with the increasing use of deep learning

based systems in various fields, the robustness of these
systems have become a major point of concern, especially
in safety-critical fields like autonomous vehicles. Deep
neural networks have been recently found vulnerable to
well-designed input samples, called adversarial examples.
Adversarial examples are defined as slightly skewed
examples which are mis-classified by the model. They are
imperceptible to human but can easily fool deep neural
networks in the testing/deploying stage.1.

Keyword Spotting refers to the problem of identifying
keywords in speech. It can potentially be used to develop
fully hands-free interface. Keyword spotting is essentially a
classification problem in which the model needs to classify
the audio into two classes - either the keyword is present or
the keyword is absent. In this project, we aim at generating
adversarial examples for keyword spotting systems and
retraining the system to enhance robustness.

II. PRIOR WORK
Adversarial examples have been an important area of

focus in recent years. [1] proposes Fast Gradient Sign
Method(FGSM)[1], an efficient technique for generating
adversarial examples and for increasing robustness of deep
learning models by modifying the training routine. They
essentially add a small perturbation to the input and select
the perturbation such that there is a large variation in the
output. [2] used FGSM to generate adversarial examples for
an attention-based KWS model. They extract 40 dimensional
mel-filterbank features from audio signals and add noise
to the features to generate adversarial examples. Then they
augment the data with the original model and retrain the
KWS model, observing an an overall decrease in the False
Reject Rate. [3] uses a genetic algorithm which adds small
noise to input audio, without any knowledge of the victim
model architecture or parameters, to generate adversarial
examples. More recently, GAN based solution, namely Ad-
vGAN (Adversarial GAN)[4], have also been proposed for
the purpose of generating adversarial examples for image

∗Equal Contribution
1A good summary of recent findings in on adversarial examples on deep

learning is presented in [8]

classification. We plan to use GANs in a similar manner as
[4] for the purpose of generating adversarial examples for
keyword spotting systems.

III. PROPOSED APPROACH

In this work, we plan to generate adversarial examples
for keyword spotting using AdvGANs [4] and retrain the
keyword-spotting model after augmenting the data with the
adversarial examples generated. Our project can be divided
into the following components :

• Dataset for training KWS model and AdvGAN
• Choosing a Keyword Spotting (KWS) model to perform

adversarial attack
• Input/Output Feature Selection
• Selecting an architecture for Generator and Discrimina-

tor

A. Dataset for training KWS model and AdvGAN

Google Speech Commands v2.0 containing over 105,000
1-second long .wav files of 30 different utterances such as up,
down, left, right etc. We select 7 classes - yes, no, marvin,
left, right, silence, unknown for our experiments and use a
80:10:10 split of the data into training, validation & test set.

B. Choosing a Keyword Spotting (KWS) model to perform
adversarial attack

For the purpose of a KWS model, we are using Honk
which is a PyTorch re-implementation Google’s TensorFlow
convolutional neural networks for keyword spotting based
on [6] as shown in figure 1. It takes as input the MFCC
features from the audio signals and classifies it into one of
the predefined keyword classes.

Fig. 1. Convolutional Neural Network Architecture for Keyword Spotting

C. Input/Output Feature Selection

Since we are generating adversarial samples, it is neces-
sary for them to be imperceptible to the human ear. For this
purpose, we require such features from which reconstruction
of audio signals is possible and efficient. The KWS model
we have have selected is constrained to be trained on MFCC
features. We therefore, select Mel spectrogram features for

http://honk.ai/

the purpose of training the GAN. It is possible to convert
the Mel spectrogram to MFCC features through operations
that allow backward flow of gradients. The transformation
involves taking natural logarithm of the mel spectrogram and
multiplying by the discrete cosine transform filter matrix.

D. Selecting an architecture for Generator and Discrimina-
tor

The GAN architecture is similar to the one proposed in
CycleGAN-VC [7] which used it for the purpose of voice
conversion. The generator and discriminator architecture are
shown in Figure 2. We implemented the generator and
discriminator network for the purpose of our task with a
similar architecture as [7], using MFCC features instead of
MCEP features.

Fig. 2. GAN architecture

IV. TRAINING PIPELINE AND OPTIMISATION CRITERION

Figure 3 shows an overview of the AdvGAN used for
the purpose of generating Adversarial examples. The gener-
ator network G takes x (a mel spectrogram) as input and
generates a perturbation G(x). Then x + G(x) will be sent
to the discriminator D, which is used to distinguish the
generated data and the original instance x. The goal of D is
to encourage that the generated instance is indistinguishable
with the data from its original class. In tandem, to generate
Adversarial examples, we input x to the target KWS model,
whose output is used to calculate the adversarial loss Ladv

whose goal is to encourage the perturbed input (x + G(x))
to be classified incorrectly.

Fig. 3. AdvGAN setup

The AdvGAN has 4 different types of loss functions -
Adversarial Loss, Generator Loss, Discriminator Loss, Hinge
Loss.

• Adversarial Loss Ladv : To make the KWS network
mis-classify the example Ladv = Mean over batch of
probability of correct class

• Generator Loss Lgen : Training the generator network.
Lgen = −log(D(x+G(x)))

• Discriminator Loss Ldisc : Training the discriminator
network. Ldisc = −[log(D(x)) + log(D(x+G(x)))]

• Hinge Loss Lhinge :To constrain the noise added by
the Generator Lhinge = max(||G(x)||2 − c, 0)

The generator is trained on Lgen + α ∗ Lhinge + β ∗ Ladv

and the discriminator is trained on Ldisc.

V. EXPERIMENTAL SETUP

The KWS Model was first trained on the Google speech
commands dataset with 7 classes corresponding to silence,
unknown, yes, no, marvin, left, right using SGD with mo-
mentum. The model converged to a test accuracy of 94.1%.
This trained model was then used to train the AdvGAN.
The hyper parameters used during training are : learn-
ing rate set to 0.001, SGD with momentum(0.9) and L2
regularisation(1e−5) for optimizer, α = 0.1 and β = 0.04
as loss coefficient,. c = 0 for Lhinge. The Mel Spectrograms
were mean and variance normalized before feeding into the
GAN.

VI. RESULTS AND OBSERVATIONS

The original KWS model was trained on a pre-processed
input in which background-noise is added to the audio
signals along with a random time shift randomly selected
from 0 to 100 ms at the start or end, before MFCC features
were extracted from them. After the AdvGAN model was
trained, the KWS model is retrained on sample augmented
with adversarial examples obtained from AdvGAN. We
evaluate the performance of the re-trained model on both
clean and adversarial test data and compare it’s performance
with the original model. We also test against training the
entire model using SpecAugment [5], a very recent data
augmentation technique for speech recognition. Table VI
summarises our results.

The following observation can be made from the results
obtained:

• The accuracy on the Adversarial test set (71%) is
significantly smaller than the original test set (94.1%),
thus proving that the Generator has leaned to fool the
kws model.

• Retraining on test data augmented with the Adversarial
train samples increases the test accuracy on both the
clean and Adversarial Test set showing that training
on the Adversarial samples helps to make model more
generalised and robust

• One interesting observation is that the kws model
trained with SpecAugment suffered a smaller drop in
accuracy as compared to original model indicating that

SpecAugment indeed makes the model more robust to
noise

TABLE I
COMPARISION OF ORIGINAL MODEL, MODEL RETRAINED ON

ADVERSARIAL EXAMPLES AND MODEL TRAINED USING SPECAUGMENT

KWS Model Clean Test Set Adversarial Test Set
Original KWS Model 94.1% 71.6%

Retrained KWS Model 96.07% 91.78%
KWS Model trained using

SpecAugment 95.25% 81.56%

Figure VI represents the original spectrogram, the noise
added by the generator and the noisy mel spectrogram
obtained after adding the noise. These are computed for a
specific utterance, “No". We observe that the confidence of
the model on the noisy spectrogram is substantially low as
compared to the original spectrogram. Although it seems that
the mel-spectrogram is very different from the original, the
sound generated after converting the spectrogram to audio
is very similar to the original audio, and the noise almost
imperceptible. The numbers show the confidence reported by
the original KWS model on the spectrogram. Some sample
audios and their adversarial counterparts are available here.

Fig. 4. Adding noise using AdvGAN to an utterance of “No"

VII. IMPLEMENTATION DETAILS

All implementations were done using PyTorch. Our code
is available at the following Google Colab links :

• Honk Keyword Spotting Model
• AdvGAN for Keyword Spotting
• KWS Training using SpecAugment

VIII. CHALLENGES & FUTURE WORK

• Initially adding noise directly to MFCC features; No
effective method to perform regeneration of audio from
MFCC due to loss of temporal information

• Training of GAN quite unstable and extensive hyper pa-
rameter tuning was required to generate good examples

• One direction of exploration may be to use an alter-
native definitions of Adversarial loss than simply just
averaging class probabilities

• The technique used could also be extended to generate
adversarial examples for more complex tasks such as
ASR

IX. CONCLUSION

In this project, we explored the use of adversarial examples
generated using an AdvGAN for improving the performance
of a Keyword Spotting System. We first verified that ad-
versarial queries with almost imperceptible noise could be
created using the proposed GAN architecture. Then we
augmented the training data with these generated adversarial
examples to retrain our KWS model. we observed that it
helped the model to achieve improved performance on the
test set thus providing a way to improve robustness of the
model.

REFERENCES

[1] Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy. Explaining
and Harnessing Adversarial Examples

[2] Xiong Wang, Sining Sun, Changhao Shan, Jingyong Hou, Lei Xie, Shen
Li, Xin Lei, 2019. Adversarial Examples For Improving End-To-End
Attention-Based Small-Footpring Keyword Spotting

[3] Moustafa Alzantot, Bharathan Balaji, Mani Srivastava Did you hear
that? Adversarial Examples Against Automatic Speech Recognition

[4] Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu and
Dawn Song, 2019. Generating Adversarial Examples with Adversarial
Networks

[5] Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng Chiu1, Barret
Zoph, Ekin D. Cubuk, Quoc V. Le1 SpecAugment: A Simple Data
Augmentation Method for Automatic Speech Recognition

[6] Tara N. Sainath, Carolina Parada. Convolutional Neural Networks for
Small-footprint Keyword Spotting

[7] Takuhiro Kaneko and Hirokazu Kameoka, 2018. CycleGAN-VC: Non-
parallel Voice Conversion Using Cycle-Consistent Adversarial Net-
works

[8] Xiaoyong Yuan, Pan He, Qile Zhu, Xiaolin Li. Adversarial Examples:
Attacks and Defenses for Deep Learning

https://drive.google.com/open?id=14luEkffEqDceu6Z6l2v6jy0S3hHo6Xxk
https://colab.research.google.com/drive/19-unWJoNGHjBZ_nqcKtD7v1GX4c2CNcW
https://colab.research.google.com/drive/1IZm3n4P0ulGhC8PqcbMgHaa8GFphk1Xo
https://colab.research.google.com/drive/1Ie6MxjAY0hqvlkOm2mAK5N2i_A-23ZGB

	INTRODUCTION
	PRIOR WORK
	PROPOSED APPROACH
	Dataset for training KWS model and AdvGAN
	Choosing a Keyword Spotting (KWS) model to perform adversarial attack
	Input/Output Feature Selection
	Selecting an architecture for Generator and Discriminator

	Training pipeline and optimisation criterion
	Experimental Setup
	RESULTS AND OBSERVATIONS
	Implementation Details
	Challenges & Future Work
	Conclusion
	References

